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ABSTRACT 

An inverse Finite Element Method (iFEM) is presented for beam and frame 
structures. The method is aimed at reconstructing the complete displacement field 
starting from in situ measurements of surface strains. A laboratory experiment is 
conducted on a simple cantilever beam subjected to various static loadings. 
Experimentally measured strains are used within a single-element iFEM model to 
assess the efficiency and predictive capability of the approach with respect to 
uncertainties and measurement errors that unavoidably affect real structures.  
 
INTRODUCTION 
 

Real-time reconstruction of the deformed shape of a structure is a key technology 
for Structural Health Monitoring (SHM) [1]. The computation of the displacement 
field is performed on the basis of in situ strain data computed in real time by a network 
of strain sensors. This inverse problem is commonly referred to as shape sensing.  

Few approaches in the literature lead to practical algorithms applicable for real-
time shape sensing of aerospace structures (for a more complete review refer to [1,2]). 
Ko [3] proposed a one-dimensional scheme based on classical beam theory, in which 
the deflection and cross-sectional twist angle of an aircraft wing are determined by 
establishing the position of the wing’s neutral axis, using a representative finite 
element solution of a wing. The axial surface-strain measurements are specified at the 
nodes of a piecewise approximation of the idealized beam; the method is assessed 
using the strains from a FEM solution. Mainçon and co-workers, [4,5], developed a 
finite element formulation, seeking the solution for displacements and loads 
simultaneously. Starting from measured displacements and strains and requiring a 
priori knowledge of the material properties and a subset of applied loading, the 
formulation results in the number of unknowns that is three times the number of 
degrees-of-freedom (dof’s) in the finite element discretization. In [5] the effect of 
modeling errors is investigated. The approach was also assessed on a damaged beam  
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using experimentally measured data. Tessler and Spangler [1] developed an inverse 
Finite Element Method (iFEM) for shear-deformable plate and shell structures. The 
formulation is based on a least-squares variational principle that allows the full-field 
reconstruction of the three-dimensional displacement vector from measured surface 
strains. An experimental assessment of the method was presented in [6,7], where the 
deformed shape of a slender beam is reconstructed by an iFEM shell model using 
Fiber-Bragg Grating (FBG) strain measurements. Recently, Gherlone [8,9] presented 
an iFEM formulation for shear-deformable beam and frame structures. Beam and 
frame shape-sensing analyses were performed for static [10] and dynamic [2] loadings 
using strain data from high-fidelity FEM models. 

The paper presents a brief review of the iFEM variational formulation that 
incorporates experimentally measured strains within a simple inverse beam-frame 
element. The element is based on Timoshenko beam theory which includes the axial, 
bending, torsional and transverse shear deformations. A laboratory experiment is then 
discussed in which a thin-walled cantilevered beam is tested using a set of static 
loadings. The experimentally measured strain-rosette data are then used within a 
single inverse-beam element to model the entire beam. The modeling accuracy of the 
iFEM-reconstructed deformed shape of the beam is assessed by comparing the 
predicted displacements with those measured experimentally by the displacement 
transducers distributed along the beam’s span. 
 
INVERSE BEAM-FRAME FINITE ELEMENT FORMULATION 
 

Consider an isotropic, straight beam-frame structural member of Young’s modulus 
E , shear modulus G , and Poisson ratio ν (Figure 1(a)). The structural member is 
referred to a Cartesian coordinate system ( ), ,x y z , where x  is positioned along the 

centroidal and shear axis, and y and z are the cross-section’s principal inertial axes. 
The frame member has length L, cross-sectional area A, area moments of inertia with 
respect to the y - and z -axis, yI  and zI , and polar moment of inertia P y zI I I= + . 

Consistent with the hypotheses of Timoshenko beam theory (each cross-section 
remains flat and rigid with respect to thickness-stretch deformations along the y- and 
z-axis) [11] and neglecting axial warping due to torsion, the displacement field is  
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where xu , yu , and zu  are the displacements along the x -, y -, and z -axes 

respectively; u , v , and w  are the corresponding average displacements; xθ , yθ , and 

zθ  are the rotations about the three coordinate axes. The kinematic variables, 

, , , , ,
T

x y zu v w θ θ θ ≡  u  and their positive orientations are shown in Figure 

1(a). The displacement field (1) gives rise to the linear strains 
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where the strain measures [ ]1 2 3 4 5 6( ) , , , , ,
T

e e e e e e≡e u are given as  

 
 1 , 2 , 3 , 4 , 5 , 6 ,; ; ; ; ;x y x z x x y x z x xe u e e e w e v eθ θ θ θ θ≡ ≡ ≡ − ≡ + ≡ − ≡  (3) 

 
The iFEM formulation reconstructs the deformed structural shape by minimizing a 

weighted least-squares functional Φ  containing the strain measures obtained by in-
situ strain sensors, εe , and e(u) defined by Eqs. (3), i.e., 
 
 ( ) ( ) 2εΦ = −u e u e  (4) 

 
The ( )Φ u  functional is then discretized by C0-continuous finite elements with the 

displacements hu defined by 
 
 ( ) ( ) ( )h ex x x=u u N u≃  (5) 

 
where ( )xN  denotes C0-continuous shape functions and eu  the nodal dof’s. 
Consequently, the total least-squares functional is a sum of the N individual element 

contributions, ( )e hΦ u , i.e., 
1

N e

e=
Φ = Φ∑ . Accounting for the axial stretching, 

bending, twisting, and transverse shearing, the element functional is given by [2] 
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where 0 0 0 0 0 0

1 2 3 4 5 6, , , , ,e e eA A Aλ λ λ λ λ λ ≡  λ , with 0 ( 1,...,6)k kλ =  denoting 

dimensionless weight coefficients, and eA  the element’s cross-sectional area. The six 
components of the element functional are given as the Euclidean norms 
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where eL  is the element length, n  is the number of strain sensors within an element, 
and ix  (0 e

ix L≤ ≤ ) are the positions at which the strain sensors are located, with the 

superscript εi denoting the strain measures that are computed from the strain sensor 
values (experimental values) at the ix locations. Invoking Eqs. (2) and (5), the analytic 

element-level strain measures are expressed in matrix form as 
 
 ( ) ( ) ex=e u B u  (8) 

 
where the matrix ( )xB  contains the derivatives of the shape functions ( )xN . 

Substituting Eq. (8) into Eq. (7) and minimizing the element functional with respect to 
eu  results in the element matrix equation =e e ek u k , where ek  depends only on the 



measurement locations ix , whereas the vector ef  depends on the experimentally 

measured strains [9]. Assembly of the element contributions for the total problem 
discretization, while taking into account transformations from the element (local) to 
the global coordinate system, and upon specifying the problem boundary conditions, 
results in a non singular system of matrix equations of the form =ΚU F . The solution 
of these equations for U is efficient: the K matrix is inverted only once, since it is 
independent of the measured strains and remains unchanged for a given distribution of 
strain sensors. The F vector, however, is dependent on the measured strain values; 
thus, at any strain measurement update during deformation, the matrix-vector 
multiplication provides the solution for the unknown nodal displacement dof’s 
contained in U. 
 

 
  

(a)  (b)  
  

Figure 1. (a) Beam geometry and kinematic variables, (b) inverse finite element geometry and dof’s. 
 

For frame structural elements loaded only by forces and moments at the end 
points, the strain measures can be shown to exhibit the following span-wise 
distributions: 1e , 4e , 5e , and 6e  are constant, whereas 2e  and 3e  are linear [9]. From 

Eq. (3), it is deduced that u  and xθ  are linear, yθ  and zθ  parabolic, v  and w  cubic. 

Thus, the following interpolations are adopted [2,9,10] (also refer to Figure 1(b)): 
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where [ ](2 / 1) 1,1ex Lξ ≡ − ∈ −  is a non-dimensional axial coordinate; the subscripts 1, 

r and 2 denote positions along the beam length at 1ξ = − , 0ξ = , and 1ξ = + , 

respectively; ( )(1)
iL ξ  ( )1, 2i =  are linear Lagrange polynomials; ( )(2)

jL ξ  ( )1, , 2j r=  

are quadratic Lagrange polynomials. The cubic ( )(3)
jN ξ  ( )1, , 2j r=  polynomials are 

obtained from standard cubic Lagrange polynomials by enforcing the transverse shear 
strain measures (4e  and 5e ) to be constant along the element (refer to [2] for the 



expression of ( )(3)
jN ξ .)  The element has fourteen dof’s:  six at each end node plus 

the rotations ymθ  and zmθ  at the mid-span. The two internal rotation dof’s are 

condensed out statically to achieve a two-node, twelve dof element.  
 

 
 

  

(a) (b) 
  

Figure 2. (a) Orthogonal and cylindrical coordinate systems, (b) strain gauge location and coordinates. 
 
A key step in the formulation is to compute the strain measures, εe , from the 

experimentally measured surface strains. We shall restrict the present analysis to the 
beam-frame members with circular cross-sections only, and employ the cylindrical 
coordinate system ( ), ,x rθ  shown in Figure 2(a). A strain gauge is placed on the 

external surface ( extr R= ), at ix x= , and is oriented along the θ  and β  angles (refer 

to Figure 2(b)). The relation between the measured strain 2ε  and the six strain 

measures at ix x=  is [8,9] 
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where coscθ θ≡ , sinsθ θ≡ , coscβ β≡ , and sinsβ β≡ . For the case of end-node 

forces and moments, the constant distributions of 1e , 4e , 5e , and 6e  and linear 2e  and 

3e  can be determined requiring a total of eight strain measurements. This number may 

be reduced to six by invoking the equilibrium equations of Timoshenko beam theory 
which relate the bending moments (yM , zM ) to the transverse shear forces (yQ , zQ )  

 
 2 2

3, 5 2, 4dM d Q ; dM d Qz y z x y y z y x zx EI e k GAe x EI e k GAe= ⇒ = = ⇒ =  (11) 

 
where 2

yk  and 2
zk  denote the shear correction factors [9,11].  

 
EXPERIMENTAL RESULTS 
 

The application of iFEM for beam and frame structures has been carried out using 
a laboratory experiment conducted at the AERMEC Laboratory of the Aeronautics and 
Space Engineering Department of Politecnico di Torino. The test article, shown in 



Figure 3(a), is a thin-walled circular cross-section beam having thickness s=2 mm, 
external radius Rext=40 mm and length L=800 mm. The material is a 6060 aluminum 
alloy (E=61,922 MPa, ν=0.33). The beam has been mounted on a test-bed in a 
cantilevered configuration with one end clamped between two couples of iron blocks 
locked together by twelve bolted connections. Four different load cases have been 
considered (Figure 3(b)): (i) tip vertical force, (ii) tip horizontal force, (iii) tip force 
inclined at 30° with respect to the horizontal y-axis of the cross-section, and (iv) tip 
vertical force applied at a distance b=300 mm from the center of the cross-section. The 
loading has been achieved by placing several weights on a cradle (for a total weight of 
F=26.83 Kg). For cases (i), (ii), and (iii), the cradle was linked to a screw at the center 
of the beam tip cross-section while; for load case (iv), the cradle was suspended to a 
proper lever arm provided by a thick plate embedded at the beam tip (Figure 3(a)). 
 

  

(a) (b) 
  

Figure 3. (a) Experimental set-up (A: clamping system, B: lever arm for load case (iv), C: loading system, 
D: LVDT transducers, E: aluminum beam), (b) load cases. 

 
Nine stacked strain rosettes have been placed at three different stations along the beam 
(x=L/3, L/2, 2L/3); for each station, the three rosettes are placed at θ=–120°, 0°, +120°, 
respectively. Each rosette has three strain gauge measuring at β=0°, 45°, 90° (Figure 
2(b)). Table I shows the strain gauge configurations used. In the notation, the first 
number indicates the number of strain measurements, and the letter “E” signifies the 
use of Eqs. (11). LVDT measurements have also been taken at different locations 
along the beam length (Figure 3(a)) and used to assess the iFEM-recovered deflections 
and rotations. For all load cases, a single inverse element is used to model the entire 
beam, using 0 1 ( 1,...,6)k kλ = = , see Eq. (6). 

Table II summarizes the experimental and iFEM results. For each loading, the 
measured deflections and rotations are shown, together with the percent difference 
with the corresponding iFEM predictions.  

 



TABLE I. STRAIN GAUGE DISTRIBUTIONS 
(ORIENTATIONS ARE EXPRESSED IN DEGREES). 

Notation Orientation ( ,θ β ) at x=L/3 Orientation ( ,θ β ) at x=L/2 Orientation ( ,θ β ) at x=2L/3 

6Ea - 
(-120,0), (-120,45), (0,0), 
(0,45), (120,0), (120,45) 

- 

6Eb (-120,0), (0,0), (120,0) - (-120,0), (0,45), (120,0) 

8a 
(-120,0), (-120,45), (0,0), 

(120,45) 
- 

(0,0), (0,45), (120,0), 
(120,45) 

8b (-120,0) 
(-120,0), (-120,45), (0,0), 
(0,45), (120,0), (120,45) 

(120,0) 

 
TABLE II. EXPERIMENTAL AND IFEM RESULTS: DEFLECTIONS AND ROTATIONS 

MEASURED BY LVDT AND PERCENT DIFFERENCE (IN BOLD) IN IFEM PREDICTIONS 
USING A SINGLE INVERSE-ELEMENT MODEL. 

w(L/2) w(3L/4) w(7L/8) w(L) Measured displacements 
(mm) -0.648 -1.300 -1.635 -1.985 

6Ea -9.48 -7.82 -5.11 -3.09 
6Eb -2.85 -2.45 -0.36 0.88 
8a -1.07 -0.86 0.01 2.22 

Load 
case 

 
(i) 

iFEM 
% difference 

8b -1.52 -1.12 0.92 2.12 

 

 

v(L/2) v(3L/4) v(7L/8) v(L) Measured displacements 
(mm) 0.636 1.272 1.648 1.994 

6Ea -4.73 -3.70 -4.34 -2.61 
6Eb -4.00 -3.59 -4.58 -3.24 
8a -5.24 -3.98 -4.62 -2.95 

Load 
case  

 
(ii) 

iFEM 
% difference 

8b -2.87 -1.99 -2.87 -1.42 

 

 

v(3L/4) v(7L/8) v(L) w(3L/4) w(7L/8) w(L) Measured displacements 
(mm) 1.098 1.414 1.667 0.644 0.802 0.963 

6Ea -8.81 -8.44 -3.85 1.61 4.66 6.98 
6Eb -4.83 -5.28 -1.48 -0.70 2.40 4.81 
8a -5.97 -6.00 -1.79 -1.65 1.68 4.14 

Load 
case 

 
(iii) 

iFEM 
% difference 

8b -4.35 -4.55 -0.46 1.93 4.83 6.75 
 

w(L/2) w(3L/4) w(7L/8) w(L) θx(L) Measured displacements 
(mm) and rotations (rad) -0.664 -1.319 -1.647 -1.958 3.5x10-3 

6Ea -11.15 -8.70 -5.39 -1.37 -9.36 
6Eb -7.15 -5.69 -2.90 0.50 -5.23 
8a -4.10 -3.12 -0.58 2.51 -7.84 

Load 
case 

 
(iv) 

iFEM 
% difference 

8b -5.37 -3.83 -0.95 2.55 -9.36 

 

 
In all loading cases and using any of the considered strain-gauge configurations, the 
iFEM-predicted tip deflections differ from the measured values by less than 7%. The 
deflections computed along the beam span exhibited slightly higher differences, 
however, not exceeding 12%. The iFEM model that used eight strain gauges generally 
produced more accurate predictions compared to the six-strain gauge configuration, 
with the exception of case (iv) corresponding to 6Eb which produced a slightly 
superior prediction for the tip twist rotation.  
 The results of this first experimental assessment of iFEM for beams confirm 
the accuracy and efficiency of the present formulation, particularly taking into account 
that only a single inverse element was used to model the beam. 
 
 



CONCLUSIONS 
 
An inverse finite element method (iFEM) has been presented for the full-field 

reconstruction of the Timoshenko-type beam-frame kinematics, using experimentally 
measured strains as input quantities in the formulation. The approach has been 
demonstrated on a cantilevered beam tested under several static loading cases in a 
mechanics laboratory. Strains measured by different sets of strain gauges, attached to 
the beam’s external surface, have been employed in the inverse analyses. Using only a 
single-element model, the iFEM-reconstructed displacements and rotations compared 
favorably with those measured experimentally. The effectiveness of the iFEM 
modeling has been shown to depend on the layout and number of strain gauges. The 
results of the present effort also point towards the possibility of determining optimally 
distributed locations of the strain gauges in order to achieve further improvements in 
the shape-sensing predictions. 
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